
TFRT Deep Dive
MLIR Open Design Meeting
March 19, 2020

Presenter: Eric Johnson, Jeremy Lau, Jing Dong, Mingsheng Hong
On behalf of TensorFlow runtime team and other TFRT contributors

Work in progress and subject to change



Talk outline

● TFRT overview (review of TensorFlow Dev Summit presentation)
● High level design: key concepts and subsystems

○ Common infra and graph execution
● Next steps and selected challenges

Talk Notes / Caveats:
● Multi-host (distribution) support are part of TFRT project scope (e.g. distributed training support), but not 

covered in this talk
● Lots of compiler-runtime co-design, but only covering compiler design in brief
● Does not cover the runtime clients
● WIP and subject to change



TFRT Overview



WHAT: Level-setting

Runtime is part of TF’s infrastructure

User Code

Eager Compilation

Runtime

Kernels

TF Graph
Interfaces with eager and graph compiler

Drives model execution through kernel invocation

TFRT will replace the existing TF runtimeTFRT



WHY: Motivations for a new runtime 

Faster and bigger models More performant eager and 
graph execution

ML everywhere More flexibility in deployments, 
across server and mobile

Research innovations: ops, 
kernels, and modeling

More modular and extensible 
infrastructure

Observations of the ML/TF ecosystem...



WHAT: TFRT vision

A unified, extensible runtime providing 
best-in-class performance across a wide variety 
of domain specific hardware.

A runtime for the future of Machine Learning



WHAT: Example deployments

TFRT will impact the most important use cases

Training

e.g. Improved error reporting

Serving

e.g. Best-in-class performance

Mobile

e.g. Unified training/inference infra



WHAT: Lifetime of an ML model

TFRT’s critical role in the model training workflow

(Graph)

(Op-by-Op)

TFRT TF APIs

Lowering and Optimization Passes (MLIR)

TFRT CPU 
Kernels

TF Graph

TFRT GPU 
Kernels

TFRT TPU  
Kernels

TFRT Mobile  
Kernels

CPU GPU TPU Mobile

TFRT BEF
(Both)



WHAT: TFRT Architecture

A high-level look at the key TFRT components

Host Runtime

Distributed Runtime

GPU Runtime 

Multi-host clients
Single-host (e.g. Inference) 

clients

Low-level GPU Libraries

TPU Runtime

Low-level TPU Libraries

Other device 
runtimes...

TFRT

Not TFRT



TPU Runtime

Distributed Runtime

Low-level TPU Libraries

Multi-host clients
Single-host (e.g. Inference) 

clients

Low-level GPU Libraries

Other device 
runtimes...

WHAT: TFRT Architecture

Host Runtime

GPU Runtime 

We will focus on Host Runtime and GPU Device Runtime

TFRT

Not TFRT

Focus



TFRT Host Runtime



Where Host Runtime Fits

(Graph)

(Op-by-Op)

TFRT TF APIs

Lowering and Optimization Passes (MLIR)

TFRT CPU 
Kernels

TF Graph

TFRT GPU 
Kernels

TFRT TPU  
Kernels

TFRT Mobile  
Kernels

CPU GPU TPU Mobile

TFRT BEF
(Both)



● Foundation of TFRT: schedules work on the host and devices
● Clean separation between host and device runtimes:

○ Host runtime does not know anything about devices, just their runtimes (sets of 
kernels)

● Key design points:
○ Fully asynchronous - kernel executions can not block
○ Excellent error propagation in the presence of asynchrony
○ Performance as a first-class concern, for graph and eager

● Outline:
○ Common runtime infrastructure
○ Graph execution
○ Op-by-op execution (“eager”)

Host Runtime Design



class AsyncValue {
 public:
  bool IsConcrete() const;
  bool IsError() const;
  // IsError || IsConcrete
  bool IsAvailable() const;

  template <typename T> 
  const T& get() const;

  template <typename T, typename... Args>
  void emplace(Args&&... args);

  template <typename WaiterT>

  void AndThen(WaiterT&& waiter);

  // ...
}

● Container for data or resources
○ Not Tensor specific

● A “future” type, fulfilled with exactly one value, or an error
● Lock-free, low memory overhead, type erased, reference 

counted
● Helper class AsyncValueRef<T> provides type safety 

when contained type is known

● AsyncValues enable efficient asynchronous compute
○ Asynchronous functions return 

unavailable AsyncValues
○ Caller can schedule dependent 

computations with 
AsyncValue::AndThen()

○ Caller need not block until AsyncValue 
becomes available

Key Abstraction: AsyncValue



● Kernel: unit of computation scheduled by the runtime
○ Similar to kernel concept in current TensorFlow

● Kernels accept AsyncValue inputs and produce AsyncValue outputs
○ Runtime coordinates dataflow of AsyncValues between kernels
○ Outputs may not be immediately available, unlike current TensorFlow

● Runtime generally does not understand kernel semantics

Kernels

HexAdd

AV0 AV1

AV2

// Low-level Kernel API.

void HexAdd(KernelFrame* frame) {

  // Fetch AsyncValues from KernelFrame.

  AsyncValue* arg0 = frame->GetArgAt(0);

  AsyncValue* arg1 = frame->GetArgAt(1);

  // Fetch integers from AsyncValues.

  int v0 = arg0->get<int>();

  int v1 = arg1->get<int>();

  // Construct AsyncValue for result and 

  // point KernelFrame to it.

  frame->EmplaceResult<int>(v0 + v1);

}

// High-level Kernel API.

int HexAdd(int arg0, int arg1) {

  return arg0 + arg1;

}



func @sample_function() -> () {

  %one = hex.constant.i32 1         // Make AsyncValue with value 1

  %two = hex.constant.i32 2         // Make AsyncValue with value 2

  %three = hex.add.i32 %one, %two   // Add 1 and 2. Store 3 in AsyncValue %three

  hex.print.i32 %three              // Print AsyncValue %three

  hex.return %three : i32           // Return AsyncValue %three

}

Host programs encode a dataflow graph:
● Similar to GraphDef in current TensorFlow
● Expressed in MLIR. Typically compiler generated
● Designed for low-level dispatch efficiency
● Designed for compiler transformations and analysis

⇒ Example: Use dataflow analysis for buffer reuse

Host Program



Kernel inputs and outputs are arbitrary C++ data types wrapped in AsyncValues
● Not always Tensors like current TensorFlow

In host programs a MLIR type maps to one C++ data type
● i32 → int32_t
● !ts.shape → tfrt::TensorShape
● !dht.tensor.f32.2 → tfrt::DenseHostTensor<float, 2>

Important for low-level efficiency, flexibility, debuggability:
● Type check host programs
● Device-specific kernels can directly use their native types

○ For example, CUDA kernels could accept and return CUstreams

Generic Type System

// MLIR Program                                    // MLIR Types
%shape_b1 = ts.build_shape [100, 512]              // () -> !ts.shape
%broadcast_b1 = dht.broadcast.f32.1 %b1, %shape_b1 // (!dht.tensor.f32.1, !ts.shape) -> !dht.tensor.f32.2
%h1 = dht.add.f32.2 %matmul1, %broadcast_b1        // (!dht.tensor.f32.2, !dht.tensor.f32.2) -> !dht.tensor.f32.2
%relu1 = dht.relu.f32.2 %h1                        // !dht.tensor.f32.2 ->  !dht.tensor.f32.2



● Kernels are registered at runtime initialization
○ Call KernelRegistry::AddKernel to map MLIR ops to C++ functions
○ Similar to MLIR PassRegistration

● Easy to experiment with new kernels:
○ Implement and register C++ function
○ Invoke kernel from MLIR, runtime runs the corresponding C++ code

● Moving towards a modular registration system
○ Dynamically load kernels

■ Deploy kernels as shared libraries
■ Less coupling between TFRT’s code base and third party kernels
■ Requires stable kernel ABI

○ Can still statically link kernels if desired

Kernel Registration

// MLIR op hex.add.i32 is implemented by C++ function HexAdd.

static void RegisterKernels(KernelRegistry* registry) {

  registry->AddKernel("hex.add.i32", TFRT_KERNEL(HexAdd));

}

TFRT_STATIC_KERNEL_REGISTRATION(RegisterKernels);



TFRT Host Runtime Design Highlights
Asynchronous Execution

● Kernels may not block, nonblocking executor (see next section)
● Lock-free AsyncValue

Thread Pool

● One compute thread pool for the process: Centrally managed to avoid thread contention
● Maintain ~1 compute thread per core for efficiency
● Customizable for different target environments

○ Pool of std::threads for general server deployments
○ Single threaded implementation for resource constrained deployments

Memory Allocation

● Central interface (HostAllocator) for most memory allocations
● Customizable for different target environments

○ TCmalloc for general server deployments
○ Simple allocator for embedded environment

Kernels may use libraries with private threadpools or memory allocators but this may reduce efficiency

https://github.com/google/tcmalloc


TFRT BEF Executor
“Binary Executor Format” (BEF) Files



Where BEF Executor Fits

(Graph)

(Op-by-Op)

TFRT TF APIs

Lowering and Optimization Passes (MLIR)

TFRT CPU 
Kernels

TF Graph

TFRT GPU 
Kernels

TFRT TPU  
Kernels

TFRT Mobile  
Kernels

CPU GPU TPU Mobile

TFRT BEF
(Both)



● BEF encodes a hardware-specific lowered graph function
● Primary interface between compiler and runtime

● Designed for efficient execution
● Low overhead: execute program by reading mmap’d byte array
● Persistent and stable: Compile once offline, run many times 

online. Great for inference use-cases

● Composed of sections, similar to ELF. Each section has its own 
format

● Extensible: BEF is versioned, reader ignores unknown sections, 
new versions may define new sections

Binary Execution Format (BEF)
BEF_FILE     ::= `0x0B` `0xEF` SECTION*

SECTION_DATA ::= FORMAT_VERSION_SECTION
SECTION_DATA ::= LOCATION_FILENAMES_SECTION
SECTION_DATA ::= LOCATION_POSITIONS_SECTION
SECTION_DATA ::= STRINGS_SECTION
SECTION_DATA ::= CONSTANTS_SECTION
SECTION_DATA ::= KERNELS_SECTION
SECTION_DATA ::= TYPES_SECTION

SECTION_DATA ::= FUNCTIONS_SECTION
SECTION_DATA ::= FUNCTION_INDEX_SECTION

SECTION_DATA ::= CONSTANT_TYPES_SECTION
SECTION_DATA ::= CONSTANT_NAMES_SECTION
SECTION_DATA ::= REGISTER_TYPES_SECTION

// Unknown section.
SECTION_DATA ::= BYTE*

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format


BEFExecutor
BEF Executor evaluates a BEF dataflow graph “executor” style:

● Not a bytecode-like interpreter: no concept of program counter
● “Strict” execution by default: run a kernel only when all its inputs are available

● Executor features:
○ Lock-free: atomics instead of mutexes
○ Non-blocking: defer dependent work with AsyncValue::AndThen 
○ Supports “non-strict” execution: may run a kernel when some of its inputs are available

■ Good for efficiently forwarding unavailable inputs to outputs

● Key concepts:
○ BEF: dataflow graph
○ Kernel: dataflow node
○ AsyncValue: dataflow edge



● mlir_to_bef walks a MLIR host program and emits a BEF binary
● Round trip: mlir_to_bef / bef_to_mlir

○ Very mechanical, similar to assembler / 
disassembler

● Great for testing: Test kernels by running them with the executor
● Tests are input data, not encoded in binaries
● FileCheck verifies CHECKs in tests

Lowering to BEF

func @test.add.i32() {

  %x = hex.constant.i32 42

  %one = hex.constant.i32 1

  %y = hex.add.i32 %x, %one

  // CHECK: int32 = 43

  hex.print.i32 %y

  hex.return

}

foo.mlir

foo.bef

mlir_to_bef

bef_executor

bef_to_mlir

Storage

Compiler

static int32_t HexAddI32(

    int32_t arg0,

    int32_t arg1) {

  return arg0 + arg1;

}

registry->AddKernel(

    "hex.add.i32",

    TFRT_KERNEL(HexAddI32));

https://llvm.org/docs/CommandGuide/FileCheck.html


Lo
w

er
in

g

Host Runtime

MLIR
Host 

Program
BEF

ml
ir
_t
o_
be
f

BEFExecutor

Kernels Registers

Add

Print

KernelFrame
Arguments

Result

KernelFrame

AsyncValue 1

AsyncValue 2

AsyncValue 3
Arguments

Host Runtime Summary



TPU Runtime

Host Runtime

Distributed Runtime

Low-level TPU 
Libraries

Multi-host clients
Single-host (e.g. Inference) 

clients

Low-level GPU 
Libraries

Other device 
runtimes...

Device Runtime for 
Graph Execution

GPU Runtime 



Device Runtime Design Principles

● A thin wrapper of low-level (driver) APIs, exposing device capabilities to 
graph compiler:
○ Memory Allocation
○ Async host <-> device transfer, and kernel execution
○ Dependency management

● Focus on mechanism instead of policy
○ E.g. No built-in special-purpose streams for GPU support:

■ For pure eager execution, can default to one stream for 
everything

■ For tf.function execution, compiler can pick streams



CUDA in TFRT: Kernel Execution

crt.launch <stream> <launchable> <arguments>
● crt.launch launches a launchable with arguments on stream.

● launchable can contain a few different types of programs:

○ In the simplest case, it can contain a cuda kernel symbol. Then, crt.launch will simply 
call cudaLaunchKernel

○ At the other extreme, it can build and execute a CUDA Graph

● It would be nice to make launchable serializable.



CUDA in TFRT: Kernel Execution

// Allocate a buffer and make a GPU tensor
%b1 = crt.mem.alloc %stream %size %align
%t2 = crt.make_tensor %b1 %shape

// Launch some kernels. %t1 has some data on GPU. %ch0 is a chain
%ch1 = crt.launch %stream <sigmoid> %t1 %t2 %ch0   // t2 = sigmoid(t1)
%ch2 = crt.launch %stream <sqrt> %t2 %t2 %ch1      // t2 = sqrt(t2)

// Allocate pinned host memory, copy, and print
%hb = crt.mem.host_alloc %size %align
%ch3 = crt.mem.copy_dtoh %stream %t2 %hb %ch2
%ch4 = crt.mem.free %t2 %ch3               // can free immediately after launching
%ev = crt.event.create %flags
%ch5 = crt.event.record %stream %ev %ch4
%ch6 = crt.event.poll %ev %ch5             // %ch completes when event is reached    
hex.print %hb2 %ch6

API closely resembles 
CUDA APIs

Consecutive synchronous 
kernels can be JITed/AOTed 
to reduce runtime overhead.

Use Chain to sequence device 
kernels



TFRT End-to-End 
Inference Workflow



How the e2e Inference Workflow Fits

(Graph)

(Op-by-Op)

TFRT TF APIs

Lowering and Optimization Passes (MLIR)

TFRT CPU 
Kernels

TF Graph

TFRT GPU 
Kernels

TFRT TPU  
Kernels

TFRT Mobile  
Kernels

CPU GPU TPU Mobile

TFRT BEF
(Both)



TFRT End-to-End Inference Workflow

TF Graph

TFRT Host Program

BEF

MLIR TF Dialect

BEFExecutor

Compiler Optimizations



Compiler Optimizations: Layout Optimization

Domain specific optimizations in MLIR passes

Channels 
First

%0 = "tf.Conv2d"(%input, %filter)
          {strides: [1,1,2,2], padding: "SAME", data_format: "NCHW"}
    : (tensor<1x64x56x56*xf32>, tensor<*xf32>) -> tensor<1x64x28x28xf32>

%1 = "tf.FusedBatchNorm"(%x, %scale, %offset) {data_format: "NCHW"}
    : (tensor<1x64x28x28xf32>, ...) -> tensor<1x64x28x28xf32>

%2 = "tf.Mean”(%1) {reduction_indices: [2,3]}
    : (tensor<1x64x28x28xf32>) -> tensor<1x64xf32>



Compiler Optimizations: Layout Optimization

Domain specific optimizations in MLIR passes

Channels 
Last

%0 = "tf.Conv2d"(%input, %filter)
          {strides: [1,1,2,2], padding: "SAME", data_forma: "NHWC"}
    : (tensor<1x56x56x64*xf32>, tensor<*xf32>) -> tensor<1x28x28x64xf32>

%1 = "tf.FusedBatchNorm"(%x, %scale, %offset) {data_format: "NHWC"}
    : (tensor<1x28x28x64xf32>, ...) -> tensor<1x28x28x64xf32>

%2 = "tf.Mean”(%1) {reduction_indices: [1,2]}
    : (tensor<1x28x28x64xf32>) -> tensor<1x64xf32>



Power of MLIR!

● Layout optimization works with MLIR Op interfaces and doesn’t 
know anything about concrete operations 
(https://mlir.llvm.org/docs/Interfaces/)

● Optimizations are reusable across different dialects (e.g. the same 
layout optimization pass can be shared between TF and XLA 
dialects)

● Much much easier to write optimization passes with MLIR than with 
GraphDef

Dialects opt-in by implementing op interfaces

https://mlir.llvm.org/docs/Interfaces/


Benchmarking TFRT

ResNet GPU inference on TFRT vs. the existing stack

Model: Resnet-50 v1.5

Data precision: trained and served with FP16 mixed precision

Batch size: Inference using batch size 1 with image data (NHWC [1, 224, 224, 3]) 
loaded in memory

Scenario: MLPerf single-stream mode

Hardware: Mainstream CPU (Xeon Gold 6154) and GPU (NVIDIA TITAN V)

Toolchain: CUDA 10.1, CuDNN 7.6.4, GPU driver 430.34

Setup
Resnet-50 v1.5

batch size 1

FP16



Benchmarking results

ResNet GPU inference is 28% faster with TFRT



Next Steps and Selected Challenges



TFRT serving support

● Productionize TFRT integration with TensorFlow Serving and other Google production serving stacks
○ Build out graph compiler and runtime for serving
○ Provide a general purpose “runtime fallback” mechanism, to call into existing kernels via 

current runtime
○ Fine tune threadpool and tail latency
○ Make the infra stack easy to monitor and debug

(Inference Flow)

(Model Load Flow)

Model A

TFRT

Models (TFRT In-Memory Representation)

TF Serving

Client

SavedModel

Response

Model B

Request

Key



TFRT training support

● TensorFlow integration
○ Graph execution

■ Graph compiler support (aligned with serving needs)
○ Eager execution

■ Parallel efforts in reducing python stack overhead
● Exploring the integration with other ML frontends



TFRT mobile support

● An opportunity to provide a unified mobile & server experience
● Binary size and library dependency management
● WIP: Bridging performance and feature gaps with TFLite
● Selected opportunities and challenges

○ On-device compiler with small binary size
○ AOC and interpreter modes
○ Running op scheduling that balances performance and power concerns

● Stay tuned!



Thank you! Questions?


