TFRT Deep Dive

MLIR Open Design Meeting
March 19, 2020

Presenter: Eric Johnson, Jeremy Lau, Jing Dong, Mingsheng Hong
On behalf of TensorFlow runtime team and other TFRT contributors

Work in progress and subject to change

% Google Al

i Google Al

Talk outline

® TFRT overview (review of TensorFlow Dev Summit presentation)
e High level design: key concepts and subsystems

o Common infra and graph execution
® Next steps and selected challenges

Talk Notes / Caveats:

e Multi-host (distribution) support are part of TFRT project scope (e.g. distributed training support), but not
covered in this talk

Lots of compiler-runtime co-design, but only covering compiler design in brief
® Does not cover the runtime clients

® WIP and subject to change

TFRT Overview

i Google Al

WHAT: Level-setting

Runtime is part of TF's infrastructure

User Code
D> Interfaces with eager and graph compiler
Eager Compilation P> Drives model execution through kernel invocation

P TFRT will replace the existing TF runtime

Kernels

i Google Al

WHY: Motivations for a new runtime

Observations of the ML/TF ecosystem...

More performant eager and

P Faster and bigger models graph execution

> Research innovations: ops, More modular and extensible
kernels, and modeling infrastructure

More flexibility in deployments,

» ML everywhere .
across server and mobile

3 Google Al

WHAT: TFRT vision

A runtime for the future of Machine Learning

A unified, extensible runtime providing
best-in-class performance across a wide variety
of domain specific hardware.

i Google Al

WHAT: Example deployments

TFRT will impact the most important use cases

By LN
sl /
Training Serving Mobile

e.g. Improved error reporting e.g. Best-in-class performance e.g. Unified training/inference infra

WHAT: Lifetime of an ML model

TFRT's critical role in the model training workflow

TRRT TF APIs
(Graph) TF Graph
(Op-by-OE)
(Both) Lowering and Optimization Passes (MLIR)
[0)
TFRT BEF
\l
TFRT CPU TFRT GPU TFRT TPU TFRT Mobile
Kernels Kernels Kernels Kernels

CPU GPU TPU Mobile

i Google Al

WHAT: TFRT Architecture

A high-level look at the key TFRT components

TFRT

Multi-host clients

Single-host (e.g. Inference)

Not TFRT

Distributed Runtime

GPU Runtime TPU Runtime

clients

Host Runtime

Other device

runtimes...
Low-level GPU Libraries Low-level TPU Libraries

% Google Al

WHAT: TFRT Architecture

We will focus on Host Runtime and GPU Device Runtime

Not TFRT

Focus

Multi-host clients

Single-host (e.g. Inference)
clients

Host Runtime

GPU Runtime

Other device

Low-level GPU Libraries

runtimes...

i Google Al

TFRT Host Runtime

Where Host Runtime Fits

TERT TF APIs
(Graph) TF Graph
—_—
(Op-by-OE)
(Both) Lowering and Optimization Passes (MLIR)
O
TFRT BEF
\
TFRT CPU TFRT GPU TFRTTPU TFRT Mobile
Kernels Kernels Kernels Kernels
CPU GPU TPU Mobile

i Google Al

i Google Al

Host Runtime Design

e Foundation of TFRT: schedules work on the host and devices
e C(lean separation between host and device runtimes:

O Host runtime does not know anything about devices, just their runtimes (sets of
kernels)
e Key design points:
o Fully asynchronous - kernel executions can not block
o Excellent error propagation in the presence of asynchrony
o Performance as a first-class concern, for graph and eager

e CQutline:
o Common runtime infrastructure
o Graph execution
o Op-by-op execution (“eager”)

Key Abstraction: AsyncValue

Container for data or resources
o Not Tensor specific

A “future” type, fulfilled with exactly one value, or an error

Lock-free, low memory overhead, type erased, reference
counted

Helper class AsyncValueRef<T> provides type safety
when contained type is known

AsyncValues enable efficient asynchronous compute

o Asynchronous functions return
unavailable AsyncValues

o Caller can schedule dependent
computations with
AsyncValue::AndThen()

o Caller need not block until AsyncValue
becomes available

class AsyncValue {

public:

bool IsConcrete() const;
bool IsError() const;

// IsError || IsConcrete
bool IsAvailable() const;

template <typename T>
const T& get() const;

template <typename T, typename...

void emplace(Args&&... args);

template <typename WaiterT>
void AndThen(WaiterT&& waiter);

//

i Google Al

Args>

i Google Al

Kernels

e Kernel: unit of computation scheduled by the runtime

o Similar to kernel concept in current TensorFlow
® Kernels accept AsyncValue inputs and produce AsyncValue outputs

o Runtime coordinates dataflow of AsyncValues between kernels

o Outputs may not be immediately available, unlike current TensorFlow
® Runtime generally does not understand kernel semantics

// Low-level Kernel API. // High-level Kernel API.

void HexAdd(KernelFrame* frame) { int HexAdd(int arg@, int argl) {
// Fetch AsyncValues from KernelFrame. return argd + argl,
AsyncValue* argd = frame->GetArgAt(9); }

AsyncValue* argl = frame->GetArgAt(1);

// Fetch integers from AsyncValues. @ m

int v@ = argd->get<int>();
int vl = argl->get<int>();

HexAdd
// Construct AsyncValue for result and
// point KernelFrame to it.
frame->EmplaceResult<int>(vO + vl1); AV2

i Google Al

Host Program

Host programs encode a dataflow graph:

® Similar to GraphDef in current TensorFlow

® Expressed in MLIR. Typically compiler generated
® Designed for low-level dispatch efficiency
[J

Designed for compiler transformations and analysis
= Example: Use dataflow analysis for buffer reuse

func @sample_function() -> () {

%one = hex.constant.i32 1 // Make AsyncValue with value 1
%two = hex.constant.i32 2 // Make AsyncValue with value 2

%three = hex.add.i32 %one, %two // Add 1 and 2. Store 3 in AsyncValue %three

hex.print.i32 %three // Print AsyncValue %three
hex.return %three : i32 // Return AsyncValue %three

i Google Al

Generic Type System

Kernel inputs and outputs are arbitrary C++ data types wrapped in AsyncValues
e Not always Tensors like current TensorFlow

In host programs a MLIR type maps to one C++ data type
e 372 —int32_t
e lts.shape — tfrt:TensorShape
e Idhttensor.f32.2 — tfrt:DenseHostTensor<float, 2>

Important for low-level efficiency, flexibility, debuggability:
e Type check host programs
e Device-specific kernels can directly use their native types

o For example, CUDA kernels could accept and return CUstreams

// MLIR Program // MLIR Types

%shape_bl = ts.build _shape [100, 512] // () -> lts.shape

%broadcast_bl = dht.broadcast.f32.1 %bl, %shape_bl // (!dht.tensor.f32.1, !ts.shape) -> !dht.tensor.f32.2

%hl = dht.add.f32.2 %matmull, %broadcast_bl // (!'dht.tensor.f32.2, !dht.tensor.f32.2) -> !dht.tensor.f32.2

%relul = dht.relu.f32.2 %h1 // l'dht.tensor.f32.2 -> !dht.tensor.f32.2

i Google Al

Kernel Registration

® Kernels are registered at runtime initialization
o Call KernelRegistry: :AddKernel to map MLIR ops to C++ functions
o Similar to MLIR PassRegistration
® FEasy to experiment with new kernels:
o Implement and register C++ function
o Invoke kernel from MLIR, runtime runs the corresponding C++ code

® Moving towards a modular registration system
o Dynamically load kernels
m Deploy kernels as shared libraries
m Less coupling between TFRT's code base and third party kernels
m Requires stable kernel ABI
o Can still statically link kernels if desired

// MLIR op hex.add.i32 is implemented by C++ function HexAdd.

static void RegisterKernels(KernelRegistry* registry) {
registry->AddKernel("hex.add.i32", TFRT_KERNEL (HexAdd));

}

TFRT_STATIC_KERNEL_REGISTRATION(RegisterKernels);

TFRT Host Runtime Design Highlights

Asynchronous Execution

e Kernels may not block, nonblocking executor (see next section)
® |ock-free AsyncValue

Thread Pool

® One compute thread pool for the process: Centrally managed to avoid thread contention
® Maintain ~1 compute thread per core for efficiency
e Customizable for different target environments
o Pool of std::threads for general server deployments
o Single threaded implementation for resource constrained deployments

Memory Allocation

® Central interface (HostAllocator) for most memory allocations
e Customizable for different target environments

o TCmalloc for general server deployments

o Simple allocator for embedded environment

Kernels may use libraries with private threadpools or memory allocators but this may reduce efficiency

i Google Al

https://github.com/google/tcmalloc

i Google Al

TFRT BEF Executor

“Binary Executor Format” (BEF) Files

Where BEF Executor Fits

TERT TF APIs
(Graph) TF Graph
—_—
(Op-by-OE)
(Both) Lowering and Optimization Passes (MLIR)
O
TFRT BEF
\
TFRT CPU TFRT GPU TFRTTPU TFRT Mobile
Kernels Kernels Kernels Kernels
CPU GPU TPU Mobile

i Google Al

Binary Execution Format (BEF)

® BEF encodes a hardware-specific lowered graph function
® Primary interface between compiler and runtime

® Designed for efficient execution
® Low overhead: execute program by reading mmap'd byte array

e Persistent and stable: Compile once offline, run many times
online. Great for inference use-cases

® Composed of sections, similar to ELF. Each section has its own
format

e Extensible: BEF is versioned, reader ignores unknown sections,
new versions may define new sections

BEF_FILE

SECTION_DATA ::
SECTION_DATA ::
SECTION_DATA ::
SECTION_DATA ::
SECTION_DATA ::
SECTION_DATA ::
SECTION_DATA ::

SECTION_DATA ::
SECTION_DATA ::

SECTION_DATA ::
SECTION_DATA ::
SECTION_DATA ::

i Google Al

= "Ox0B° "OxEF' SECTION=*

FORMAT_VERSION_SECTION
LOCATION_FILENAMES_SECTION
LOCATION_POSITIONS_SECTION
STRINGS_SECTION
CONSTANTS_SECTION
KERNELS_SECTION
TYPES_SECTION

FUNCTIONS_SECTION
FUNCTION_INDEX_SECTION

CONSTANT_TYPES_SECTION
CONSTANT_NAMES_SECTION
REGISTER_TYPES_SECTION

// Unknown section.

SECTION_DATA ::

BYTE=*

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

i Google Al

BEFExecutor

BEF Executor evaluates a BEF dataflow graph “executor” style:
® Not a bytecode-like interpreter: no concept of program counter
® “Strict” execution by default: run a kernel only when all its inputs are available

[J Executor features:
o Lock-free: atomics instead of mutexes
o Non-blocking: defer dependent work with AsyncValue::AndThen
o Supports “non-strict” execution: may run a kernel when some of its inputs are available
m Good for efficiently forwarding unavailable inputs to outputs

® Key concepts:
o BEF: dataflow graph
o Kernel: dataflow node
o AsyncValue: dataflow edge

i Google Al

Lowering to BEF
® mlir_to_bef walks a MLIR host program and emits a BEF binary
® Roundtrip:mlir_to _bef /bef to mlir
o Very mechanical, similar to assembler / @
disassembler

® Great for t'estlng: Test kernels by rL.Jnnl.ng t'hem with the executor nlir to. bef bef tolmlir
® Tests are input data, not encoded in binaries
e FileCheck verifies CHECKs in tests

static int32_t HexAddI32(func @test.add.i32() {
int32_t argo, %x = hex.constant.i32 42 — —
int32_t argl) { %one = hex.constant.i32 1 Storage bef_executor
return argd + argil; %y = hex.add.i32 %x, %one
}
// CHECK: int32 = 43
registry->AddKernel(hex.print.i32 %y
"hex.add.i32",
TFRT_KERNEL (HexAddI32)); hex.return

https://llvm.org/docs/CommandGuide/FileCheck.html

Host Runtime Summary

Lowering

MLIR

]

Host
Program

mlir_to_bef

[

{ BEF)

most Runtime
/BEFExecutor \

Kernels Registers

al =

KernelFrame

AsyncValue 1

Arguments

AsyncValue 2

Result

~—

0
KernelFrame

< Ar?uments
S—

i

— AsyncValue 3

)

Device Runtime for
Graph Execution

Multi-host clients

Single-host (e.g. Inference)
clients

GPU Runtime

Other device

Low-level GPU
Libraries

runtimes...

i Google Al

i Google Al

Device Runtime Design Principles

e A thin wrapper of low-level (driver) APIs, exposing device capabilities to
graph compiler:
o Memory Allocation
o Async host <-> device transfer, and kernel execution
o Dependency management
e Focus on mechanism instead of policy
o E.g. No built-in special-purpose streams for GPU support:
m For pure eager execution, can default to one stream for
everything
m For tf.function execution, compiler can pick streams

i Google Al

CUDA in TFRT: Kernel Execution

crt.launch <stream> <launchable> <arguments>
e crt.launchlaunches a launchable with arguments on stream.
e launchab’e can contain a few different types of programs:

o Inthe simplest case, it can contain a cuda kernel symbol. Then, crt.launch will simply
call cudaLaunchKerne'
o At the other extreme, it can build and execute a CUDA Graph

e |t would be nice to make Launchab'le serializable.

i Google Al

CUDA in TFRT: Kernel Execution

Use Chain to sequence device

// Allocate a buffer and make a GPU tensor
kernels

%b1 crt.mem.alloc %stream %size %align
%t2 crt.make_tensor %bl %shape

// Launch some kernels. %tl has some data on GPU.-5chO 1is a chain
%chl = crt.launch %stream <sigmoid> %tl % %ch@ /) t2 = <siomoid(t1)

%ch2 = crt.launch %stream <sqrt> %t2 %tz oo ~ Consecutive synchronous
. . kernels can be JITed/AOTed
// Allocate pinned host memory, copy, and print to reduce runtime overhead.

%hb = crt.mem.host_alloc %size %align
%ch3 = crt.mem.copy_dtoh %stream %t2 %hb %ch2

%ch4 = crt.mem.free %t2 %ch3 // can free immediately after launching
%ev = crt.event.create %flags

%ch5 = crt.event.record %stream %o ot API closely resembles

%ch6 = crt.event.poll %ev %ch5 // %ch c CUDA APIs “hed

hex.print %hb2 %ché

TFRT End-to-End
Inference Workflow

How the e2e Inference Workflow Fits

TFRT TF APIs
(Graph) TF Graph
—
(Op—by—OE)
(Both) Lowering and Optinmization Passes (MLIR)
(@)
TFRT BEF
\/
TFRT CPU TFRTGPU | | | TFRTTPU TFRT Mobile
Kernels Kernels | | Kernels Kernels
CPU GPU TPU Mobile

i Google Al

i Google Al

TFRT End-to-End Inference Workflow

TF Graph

!

MLIR TF Dialect

Compiler Optimizations

TFRT Host Program

BEFExecutor

Compiler Optimizations: Layout Optimization

Domain specific optimizations in MLIR passes

Channels
First

%0

%1

%2

"tf.Conv2d" (%input, %filter)
{strides: [1,1,2,2], padding: "SAME", data_format: "NCHW"}

: (tensor<1x64x56x56*xf32>, tensor<*xf32>) -> tensor<1x64x28x28xf32>

"tf.FusedBatchNorm" (%x, %scale, %offset) {data_format: "NCHW"}

: (tensor<1x64x28x28xf32>, ...) -> tensor<1x64x28x28xf32>

"tf.Mean” (%1) {reduction_indices: [2,3]}

: (tensor<1x64x28x28xf32>) -> tensor<1x64xf32>

i Google Al

Compiler Optimizations: Layout Optimization

Domain specific optimizations in MLIR passes

Channels
Last

%0

%1

%2

"tf.Conv2d" (%input, %filter)
{strides: [1,1,2,2], padding: "SAME", data_forma: "NHWC"}

: (tensor<1x56x56x64*xf32>, tensor<*xf32>) -> tensor<1x28x28x64xf32>

"tf.FusedBatchNorm" (%x, %scale, %offset) {data_format: "NHWC"}

: (tensor<1x28x28x64xf32>, ...) -> tensor<1x28x28x64xf32>

"tf.Mean” (%1) {reduction_indices: [17,2]}

: (tensor<1x28x28x64xf32>) -> tensor<1x64xf32>

i Google Al

i Google Al

Power of MLIR!

Dialects opt-in by implementing op interfaces

e Layout optimization works with MLIR Op interfaces and doesn't
know anything about concrete operations
(https://mlirllvm.org/docs/Interfaces/)

e Optimizations are reusable across different dialects (e.g. the same
layout optimization pass can be shared between TF and XLA
dialects)

e Much much easier to write optimization passes with MLIR than with
GraphDef

https://mlir.llvm.org/docs/Interfaces/

i Google Al

Benchmarking TFRT

ResNet GPU inference on TFRT vs. the existing stack

Setup
Model:
Data precision: trained and served with mixed precision
Batch size: Inference using with image data (NHWC [1, 224, 224, 3])

loaded in memory

Scenario: MLPerf single-stream mode

Hardware: Mainstream CPU (Xeon Gold 6154) and GPU (NVIDIA TITAN V)
Toolchain: CUDA 10.1, CuDNN 7.6.4, GPU driver 430.34

Google Al

Benchmarking results

ResNet GPU inference is 28% faster with TFRT

Inference time (ms)

Current TF TFRT

Next Steps and Selected Challenges

TFRT serving support

i Google Al

® Productionize TFRT integration with TensorFlow Serving and other Google production serving stacks
o Build out graph compiler and runtime for serving
o Provide a general purpose “runtime fallback” mechanism, to call into existing kernels via

current runtime

o Fine tune threadpool and tail latency

o Make the infra stack easy to monitor and debug

Client

A
C Request) CResponse)

TF Serving

TFRT

C SavedModel) >

Model A

Model B

Models (TFRT In-Memory Representation)

Key

(Inference Flow)
— >

(Model Load Flow)
—_—

i Google Al

TFRT training support

® TensorFlow integration
o Graph execution
m Graph compiler support (aligned with serving needs)
o Eager execution
m Parallel efforts in reducing python stack overhead
® Exploring the integration with other ML frontends

i Google Al

TFRT mobile support

An opportunity to provide a unified mobile & server experience
Binary size and library dependency management
WIP: Bridging performance and feature gaps with TFLite
Selected opportunities and challenges
o On-device compiler with small binary size
o AOC and interpreter modes
o Running op scheduling that balances performance and power concerns
e Stay tuned!

i Google Al

Thank you! Questions?

