Google AI

# **TFRT Deep Dive**

MLIR Open Design Meeting March 19, 2020

Presenter: Eric Johnson, Jeremy Lau, Jing Dong, Mingsheng Hong On behalf of TensorFlow runtime team and other TFRT contributors

Work in progress and subject to change



# Talk outline

- TFRT overview (review of TensorFlow Dev Summit presentation)
- High level design: key concepts and subsystems
  - Common infra and graph execution
- Next steps and selected challenges

#### Talk Notes / Caveats:

- **Multi-host (distribution)** support are part of TFRT project scope (e.g. distributed training support), but not covered in this talk
- Lots of compiler-runtime co-design, but only covering **compiler design** in brief
- Does not cover the runtime clients
- WIP and subject to change

Google Al

# **TFRT Overview**



### WHAT: Level-setting

#### Runtime is part of TF's infrastructure



- Interfaces with eager and graph compiler
- Drives model execution through kernel invocation
- TFRT will replace the existing TF runtime



### WHY: Motivations for a new runtime

Observations of the ML/TF ecosystem...



Research innovations: ops, kernels, and modeling

ML everywhere

More performant eager and graph execution

More modular and extensible infrastructure

More flexibility in deployments, across server and mobile

## WHAT: TFRT vision

A runtime for the future of Machine Learning

A unified, extensible runtime providing best-in-class performance across a wide variety of domain specific hardware.



#### WHAT: Example deployments

TFRT will impact the most important use cases



# WHAT: Lifetime of an ML model

TFRT's critical role in the model training workflow





### WHAT: TFRT Architecture

### A high-level look at the key TFRT components







### WHAT: TFRT Architecture

#### We will focus on Host Runtime and GPU Device Runtime



Google Al

# **TFRT Host Runtime**



### **Where Host Runtime Fits**



# **Host Runtime Design**

- Foundation of TFRT: schedules work on the host and devices
- Clean separation between host and device runtimes:
  - Host runtime does not know anything about devices, just their runtimes (sets of kernels)
- Key design points:
  - Fully **asynchronous** kernel executions can not block
  - Excellent **error propagation** in the presence of asynchrony
  - **Performance** as a first-class concern, for graph and eager
- Outline:
  - Common runtime infrastructure
  - Graph execution
  - Op-by-op execution ("eager")

# Key Abstraction: AsyncValue

- **Container** for data or resources
  - Not Tensor specific
- A "future" type, fulfilled with exactly one value, or an error
- Lock-free, low memory overhead, type erased, reference counted
- Helper class AsyncValueRef<T> provides type safety when contained type is known
- AsyncValues enable efficient asynchronous compute
  - Asynchronous functions return unavailable AsyncValues
  - Caller can schedule dependent computations with AsyncValue::AndThen()
  - Caller need not block until AsyncValue becomes available

```
class AsyncValue {
  public:
    bool IsConcrete() const;
    bool IsError() const;
    // IsError || IsConcrete
    bool IsAvailable() const;
```

```
template <typename T>
const T& get() const;
```

```
template <typename T, typename... Args>
void emplace(Args&&... args);
```

```
template <typename WaiterT>
void AndThen(WaiterT&& waiter);
```

```
// ...
```

# Kernels

- Kernel: unit of computation scheduled by the runtime
  - Similar to kernel concept in current TensorFlow
- Kernels accept AsyncValue inputs and produce AsyncValue outputs
  - Runtime coordinates dataflow of AsyncValues between kernels
  - Outputs may not be immediately available, unlike current TensorFlow
- Runtime generally does not understand kernel semantics

```
// Low-level Kernel API.
```

```
void HexAdd(KernelFrame* frame) {
```

```
// Fetch AsyncValues from KernelFrame.
AsyncValue* arg0 = frame->GetArgAt(0);
AsyncValue* arg1 = frame->GetArgAt(1);
```

```
// Fetch integers from AsyncValues.
int v0 = arg0->get<int>();
int v1 = arg1->get<int>();
```

```
// Construct AsyncValue for result and
// point KernelFrame to it.
frame->EmplaceResult<int>(v0 + v1);
```

```
// High-level Kernel API.
int HexAdd(int arg0, int arg1) {
  return arg0 + arg1;
}
```



## **Host Program**

Host programs encode a dataflow graph:

- Similar to GraphDef in current TensorFlow •
- Expressed in MLIR. Typically compiler generated •
- Designed for low-level dispatch efficiency •
- Designed for compiler transformations and analysis •  $\Rightarrow$  Example: Use dataflow analysis for buffer reuse

```
func @sample_function() -> () {
```

```
%three = hex.add.i32 %one, %two
```

%one = hex.constant.i32 1 // Make AsyncValue with value 1 %two = hex.constant.i32 2 // Make AsyncValue with value 2 // Add 1 and 2. Store 3 in AsyncValue %three

```
hex.print.i32 %three
hex.return %three : i32
```

```
// Print AsyncValue %three
// Return AsyncValue %three
```

# **Generic Type System**

Kernel inputs and outputs are arbitrary C++ data types wrapped in AsyncValues

• Not always Tensors like current TensorFlow

In host programs a MLIR type maps to one C++ data type

- $i32 \rightarrow int32_t$
- $!ts.shape \rightarrow tfrt::TensorShape$
- !dht.tensor.f32.2 → tfrt::DenseHostTensor<float, 2>

Important for low-level efficiency, flexibility, debuggability:

- Type check host programs
- Device-specific kernels can directly use their native types
  - For example, CUDA kernels could accept and return CUstreams

#### // MLIR Program

#### // MLIR Types

```
%shape_b1 = ts.build_shape [100, 512] // () -> !ts.shape
%broadcast_b1 = dht.broadcast.f32.1 %b1, %shape_b1 // (!dht.tensor.f32.1, !ts.shape) -> !dht.tensor.f32.2
%h1 = dht.add.f32.2 %matmul1, %broadcast_b1 // (!dht.tensor.f32.2, !dht.tensor.f32.2) -> !dht.tensor.f32.2
%relu1 = dht.relu.f32.2 %h1 // !dht.tensor.f32.2 -> !dht.tensor.f32.2
```

# **Kernel Registration**

- Kernels are registered at runtime initialization
  - Call KernelRegistry::AddKernel to map MLIR ops to C++ functions
  - Similar to MLIR PassRegistration
- Easy to experiment with new kernels:
  - Implement and register C++ function
  - Invoke kernel from MLIR, runtime runs the corresponding C++ code
- Moving towards a modular registration system
  - Dynamically load kernels
    - Deploy kernels as shared libraries
    - Less coupling between TFRT's code base and third party kernels
    - Requires stable kernel ABI
  - Can still statically link kernels if desired

```
// MLIR op hex.add.i32 is implemented by C++ function HexAdd.
static void RegisterKernels(KernelRegistry* registry) {
   registry->AddKernel("hex.add.i32", TFRT_KERNEL(HexAdd));
}
TFRT_STATIC_KERNEL_REGISTRATION(RegisterKernels);
```

# **TFRT Host Runtime Design Highlights**

#### **Asynchronous Execution**

- Kernels may not block, nonblocking executor (see next section)
- Lock-free AsyncValue

#### Thread Pool

- One compute thread pool for the process: Centrally managed to avoid thread contention
- Maintain ~1 compute thread per core for efficiency
- Customizable for different target environments
  - Pool of std::threads for general server deployments
  - Single threaded implementation for resource constrained deployments

#### **Memory Allocation**

- Central interface (HostAllocator) for most memory allocations
- Customizable for different target environments
  - <u>TCmalloc</u> for general server deployments
  - Simple allocator for embedded environment

Kernels may use libraries with private threadpools or memory allocators but this may reduce efficiency

Google AI

# **TFRT BEF Executor**

"Binary Executor Format" (BEF) Files



#### **Where BEF Executor Fits**



# **Binary Execution Format (BEF)**

- BEF encodes a hardware-specific *lowered* graph function
- Primary interface between compiler and runtime
- Designed for efficient execution
- **Low overhead**: execute program by reading mmap'd byte array
- **Persistent and stable**: Compile once offline, run many times online. Great for inference use-cases
- Composed of sections, similar to <u>ELF</u>. Each section has its own format
- Extensible: BEF is versioned, reader ignores unknown sections, new versions may define new sections

```
BEF FILE
             ::= `0x0B` `0xEF` SECTION*
SECTION_DATA ::= FORMAT_VERSION_SECTION
SECTION_DATA ::= LOCATION_FILENAMES_SECTION
SECTION_DATA ::= LOCATION_POSITIONS_SECTION
SECTION_DATA ::= STRINGS_SECTION
SECTION_DATA ::= CONSTANTS_SECTION
SECTION_DATA ::= KERNELS_SECTION
SECTION_DATA ::= TYPES_SECTION
SECTION_DATA ::= FUNCTIONS_SECTION
SECTION_DATA ::= FUNCTION_INDEX_SECTION
SECTION_DATA ::= CONSTANT_TYPES_SECTION
SECTION_DATA ::= CONSTANT_NAMES_SECTION
SECTION_DATA ::= REGISTER_TYPES_SECTION
// Unknown section.
```

SECTION\_DATA ::= BYTE\*

### **BEFExecutor**

BEF Executor evaluates a BEF dataflow graph "executor" style:

- Not a bytecode-like interpreter: no concept of program counter
- "Strict" execution by default: run a kernel only when **all** its inputs are available
- Executor features:
  - Lock-free: atomics instead of mutexes
  - Non-blocking: defer dependent work with AsyncValue::AndThen
  - Supports "non-strict" execution: may run a kernel when **some** of its inputs are available
    - Good for efficiently forwarding unavailable inputs to outputs
- Key concepts:
  - BEF: dataflow graph
  - Kernel: dataflow node
  - AsyncValue: dataflow edge

# Lowering to BEF

- mlir\_to\_bef walks a MLIR host program and emits a BEF binary
- Round trip: mlir\_to\_bef / bef\_to\_mlir
  - Very mechanical, similar to assembler / disassembler
- Great for testing: Test kernels by running them with the executor
- Tests are input data, not encoded in binaries
- <u>FileCheck</u> verifies CHECKs in tests

```
static int32_t HexAddI32(
    int32_t arg0,
    int32_t arg1) {
    return arg0 + arg1;
}
```

```
registry->AddKernel(
    "hex.add.i32",
    TFRT_KERNEL(HexAddI32));
```

```
func @test.add.i32() {
    %x = hex.constant.i32 42
    %one = hex.constant.i32 1
    %y = hex.add.i32 %x, %one
```

```
// CHECK: int32 = 43
hex.print.i32 %y
```

hex.return



## Host Runtime Summary



# Device Runtime for Graph Execution





### **Device Runtime Design Principles**

- A **thin** wrapper of low-level (driver) APIs, exposing device capabilities to graph compiler:
  - Memory Allocation
  - Async host <-> device transfer, and kernel execution
  - Dependency management
- Focus on mechanism instead of policy
  - E.g. No built-in special-purpose streams for GPU support:
    - For pure eager execution, can default to one stream for everything
    - For tf. function execution, compiler can pick streams

# **CUDA in TFRT: Kernel Execution**

#### crt.launch <stream> <launchable> <arguments>

- crt.launch launches a launchable with arguments on stream.
- launchable can contain a few different types of programs:
  - In the simplest case, it can contain a cuda kernel symbol. Then, crt.launch will simply call cudaLaunchKernel
  - At the other extreme, it can build and execute a CUDA Graph
- It would be nice to make **launchable** serializable.

### **CUDA in TFRT: Kernel Execution**



Google AI

# TFRT End-to-End Inference Workflow



### How the e2e Inference Workflow Fits





## **TFRT End-to-End Inference Workflow**



# **Compiler Optimizations: Layout Optimization**

# Domain specific optimizations in MLIR passes

# **Compiler Optimizations: Layout Optimization**

# Domain specific optimizations in MLIR passes

## **Power of MLIR!**

# Dialects opt-in by implementing op interfaces

- Layout optimization works with MLIR Op interfaces and doesn't know anything about concrete operations (<u>https://mlir.llvm.org/docs/Interfaces/</u>)
- Optimizations are reusable across different dialects (e.g. the same layout optimization pass can be shared between TF and XLA dialects)
- Much much easier to write optimization passes with MLIR than with GraphDef

# **Benchmarking TFRT**

ResNet GPU inference on TFRT vs. the existing stack

#### Setup

Model: Resnet-50 v1.5

Data precision: trained and served with FP16 mixed precision

**Batch size**: Inference using **batch size 1** with image data (NHWC [1, 224, 224, 3]) loaded in memory

Scenario: MLPerf single-stream mode

Hardware: Mainstream CPU (Xeon Gold 6154) and GPU (NVIDIA TITAN V)

Toolchain: CUDA 10.1, CuDNN 7.6.4, GPU driver 430.34

## **Benchmarking results**

ResNet GPU inference is 28% faster with TFRT





# **Next Steps and Selected Challenges**



# **TFRT serving support**

- Productionize TFRT integration with TensorFlow Serving and other Google production serving stacks
  - Build out graph compiler and runtime for serving
  - Provide a general purpose "runtime fallback" mechanism, to call into existing kernels via current runtime
  - Fine tune threadpool and tail latency
  - Make the infra stack easy to monitor and debug



# **TFRT training support**

- TensorFlow integration
  - Graph execution
    - Graph compiler support (aligned with serving needs)
  - Eager execution
    - Parallel efforts in reducing python stack overhead
- Exploring the integration with other ML frontends

# **TFRT mobile support**

- An opportunity to provide a unified mobile & server experience
- Binary size and library dependency management
- WIP: Bridging performance and feature gaps with TFLite
- Selected opportunities and challenges
  - On-device compiler with small binary size
  - AOC and interpreter modes
  - Running op scheduling that balances performance and power concerns
- Stay tuned!

Google Al

# Thank you! Questions?